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Abstract

Vibrating systems with singular mass-inertia matrices arise in recent continuum

models of Smart Structures (beams with PZT strips) in assessing the damping at-

tainable with rate feedback. While they do not quite yield "distributed" controls, we

show that they can provide a fixed nonzero lower bound for the damping coefficient at

all mode frequencies. The mathematical machinery for modelling the motion involves

the theory of Semigroups of Operators. We consider a Timoshenko model for torsion

only -- a "smart string," where the damping coefficient turns out to be a constant at

all frequencies. We also observe that the damping increases initially with the feedback

gain but decreases to zero eventually as the gain increases without limit.

* Research supported in part under NASA Grant NCC 2-374.



i. Introduction

We consider a class of vibrating systems with singular mass-inertia matrices. This

would appear to be a characteristic feature of continuum models of smart structures

[1-4] -- beams with self-straining material. In this paper in order to keep the exposi-

tion simple and illustrate the nature of the results, we limit ourselves to a Timoshenko

model for torsional motion only -- a "smart string" -- with rate feedback. We show

that the damping coefficient is a constant at all frequencies. Also the damping in-

creases as the gain increases initially but decreases to zero eventually as the gain

increases without limit. The description of the motion dynamics involves the use of

theory of Semigroups of Operators.

2. Timoshenko Model: Torsion with Rate Feedback

We consider a simplified Timoshenko "smart" beam confined to torsion mode only

-- clamped at one end and self-straining material along the entire length with rate

feedback. The continuum model dynamics are then described by (see [4]):

p_(t,s)-cO"(t,s) = O, O< s< L; O< t I

O(t,L) = 0

_o'(t,o) + _(t, o) = o

(2.1)

Here O(t, s) is the torsion angle and p the inertia parameter and c the stiffness pa-

rameter; and a > 0 is the feedback gain. The dots indicate derivative with respect to

time and the primes the derivative with respect to s, the position along the beam, L

being the beam length. We may consider this as a "singular" version of the "regular"

problem where we do have a nonzero "tip-inertia" -- with the boundary equations

_g(t,o) +c¢(t,o) +,_d(t,o) = o

considered for example in the original version of the SCOLE [5]. We have

m=O

in the present case. To underscore the "singular" feature, let us consider first how

the problem is treated for the regular case:

m#0.

As in [5], we begin with the "state" space:

7"i = L2[0, L]x E 1



including in other words the boundary value in the state. We use the notation:

f(') f(.) E L2[0, L]; b • E 1
x = b '

We define next the stiffness operator A by

[ I f(')I f'(.),f'(.)EL2[O,L]; b=f(O); f(L)=O]:D(A) = x= b '

and
--cf"(')

Ax =
-cf'(O)

Thus defined A is self-adjoint and nonnegative definite and

f0 L 12lAx, x] = c [if(s) ds = Potential Energy.

We can therefore define the positive square root, v_, and we note that

[L'Iv (_) : • : :(o) '

Define the mass-inertia operator M by

Mx

f'(.) • L2[0, L]; f(L)=0].

and note that M is nonsingular, m being nonzero. Define the control operator B on

E 1 into 7-/by

Then the equations (2.1) go over into the abstract version:

M_(t) + Ax(t) +_BB'x(0 = 0. (2.2)

Note that this corresponds to the "collocated" case, with rate feedback. To proceed

further we need to construct the energy space

_- 7-/

in which the inner product is the energy inner product:
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Defining

X 1 Z1

Y = ; Z =
X 2 Z2

[Y,Z]E = [V/"Axl, _ z,] + [Mx2, z_]

-,_ Potential Energy + Kinetic Energy .

0 I

-M-1A -aM-1BB"

(2.3)

(2.4)

] o1(.) ] 01(.)

01(0) _1= I 01(0)

D(A):Y:o2()' 10 <>i05(0) _2= 05(0)

• D(A)

we see that

AY

o2(.)

0_(o)

P

Re[.AY, Y]E = -allB*y211_ = -alO_(O)l_-

and hence A is dissipative and generates a contraction co-semigroup:

(2.5)

IIY(t)IIE < IIY(O)IIE.

We can show that

IlY(t)llE -_ 0 ast--oo

but the semigroup is not exponentially damped. The resolvent _()_, A) is compact.

The eigenalvues of A are the roots of

D()_) = (a + mA)Sinh)_vL + cvCoshAvL = O; us= -P. (2.6)
¢

We note that D(A) is an entire function of order one and completely regular growth

[6] and hence has a countable number of eigenvalues. Denoting them by { Ak} we have

,xk = -Iokl + i_; Io.,kl1oo



and [5,6l:
oo

_lokl -
m

1

[ak[ --* 0, not monotonic.

Thus the damping due to feedback goes to zero as mode frequency increases.

damping increases as c_ increases and as m decreases.

The

Singular Case

With this background, let us now get back to our problem where

m=0.

We see that (2.5) no longer is defined, since m is zero. M is singular and hence we

can no longer use (2.3) as an inner product. Hence we need to change the definition

of the energy space 7-/E. We note that the total energy is in this case given by

Hence we define now

u: = v ×L:tO,LI

Y

L(.)
= L(o)

/2(.)

f,:> (a)
Y:= /:(0) E

Y2----f2(') e L2[0, L]

[Y, YIE = [ V/_ Yl, v_ y:] + p[y2,y2].

Define A by:

z_(:) = y=

/:(')
/:(o)

/=(.)

fI(')

YI = fl(O) E T)(A)

_:_(o)

:2(')

._y = _:_(0)
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We can then verify that

_C 2

RelAY, Y] - [f_(O)l 2 <__0.
C_

Hence A is dissipative, generates a c0-semigroup which is a contraction, and (2.1)

goes over into:

Y(t) = AY(t)

and

IIY(t)IIE _ IIY(0)IIE.

The resolvent T_(A, A) is again compact. The eigenvalues are the roots of

D(A) = cuCoshAuL + aSinhAuL = 0 (2.7)

where we note that D(A) is an entire function of order one and of completely regular

growth [6] with a countable number of eigenvalues {Ak}:

_k = -I_kl 4. i_k, I_klToo.

In fact [ak[ is given by

1 Log a + cv = I_1 (2.8)
Iokl = 2L----u a - cu

and

-I_1 i(2k + 1) n
Ak - 4-

Lu Lu 2 '

-Iol ik_
-- 4. _ a > cu.

Lu Lu'

O_ < CP

The eigenfunctions are

Ok = AkSinhAku(L-s), 0< s< L

ok(.)
_k = Ak Ok(O)

A_k = Ak¢k

_¢k = Ak

_(.)

ok(o)

-_ ok(.)



m

We note that (¢k, k_k} yield a Riesz basis for all values of a, and in turn we have a

bi-orthogonal modal expansion for any Y in 7"/E:

y :
k

The semigroup generated by ,4 is exponentially damped:

IIY(t)IIE <_ IIY(0)IIEe-I lt.

Finally we note the dependence of the damping coefficient on the gain a. We have

that the damping increases as a increases from zero to cv. At a = cv, we have

lal = oo

and for a > cv, la[ decreases as a increases. The function is plotted in Figure 1. The

apparent paradox of decreasing damping can be explained by noting that as a --_ c_,

we are in the neighborhood of a = c_ and here the modes are determined by the

roots of

Sinh,_vL = 0

and for large a we may write:

CV
Sinh,_vL + m Cosh )wL = 0

a

and consider _ in place of a. In practice, the attainable gain is such that

(2
m<< 1.
CV

These results extend to the more general anisotropic Timoshenko models consid-

ered in [7] -- the damping coefficients are no longer constant but tend to a nonzero

limit as the mode frequency increases. Details of this analysis will appear elsewhere.
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